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Abstract: Rapid changing climate has increased the risk of natural hazards and threatened global and
regional food security. Near real-time monitoring of crop response to agrometeorological hazards is
fundamental to ensuring national and global food security. However, quantifying crop responses
to a specific hazard in the natural environment is still quite challenging, especially over large areas,
due to the lack of tools to separate the independent impact of the hazard on crops from other
confounding factors. In this study, we present a general difference-in-differences (DID) framework
to monitor crop response to agrometeorological hazards at near real-time using widely accessible
remotely sensed vegetation indices (VIs). To demonstrate the effectiveness of the DID framework,
we applied it in quantifying the dry-hot wind impact on winter wheat in northern China as a case
study using the VIs calculated from the MODIS data. The monitoring results for three years with
varying severity levels of dry-hot events (i.e., 2007, 2013, and 2014) demonstrated that the framework
can effectively detect winter wheat growing areas affected by dry-hot wind hazards. The estimated
damage shows a notable relationship (R2 = 0.903, p < 0.001) with the dry-hot wind intensity calculated
from meteorological data, suggesting the effectiveness of the method when field data on a large scale
is not available for direct validation. The main advantage of this method is that it can effectively
isolate the impact of a specific hazard (i.e., dry-hot wind in the case study) from the mixed signals
caused by other confounding factors. This general DID framework is very flexible and can be
easily extended to other natural hazards and crop types with proper adjustment. Not only can this
framework improve the crop yield forecast but also it can provide near real-time assessment for
farmers to adapt their farming practice to mitigate impacts of agricultural hazards.

Keywords: remote sensing; vegetation indices; winter wheat; heat stress; spectral response; shape
model fitting; damage assessment

1. Introduction

The rapidly changing climate has affected global and regional food security due
to increased temperatures, changing precipitation patterns, and more frequent extreme
events [1]. Near real-time monitoring of crop conditions is thus fundamental to ensure
national and global food security, especially under the increasing risk of natural hazards
caused by climate change. Earth Observation Systems (EOS) play a significant role in
monitoring crop response to natural hazards, such as drought, flooding, frost, and heat-
waves, at near real-time [2–5]. Previous studies have demonstrated that vegetation indices
(VIs) derived from remotely sensed data show strong responses to the physiological and
structural change of crops when they are under stresses [6–8]. Accordingly, VIs have been
widely used for crop stress monitoring (see the review article in [9]).
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Although VI data have shown great potential for monitoring crop growing conditions,
it is challenging to quantify crop response to specific agrometeorological hazards (called
as hazard below). Currently, there are two methods to evaluate crop response to specific
hazards using VI data. The first method uses the change of VI after a hazard compared
to the pre-hazard VI values in the same year to quantify crop response [10], while the
second method uses the change of VI between the hazard year and a historical hazard-free
year during the same growing period [11,12]. For the first method, how to determine the
proper VI value that represents the most severe hazard damage is very challenging due
to other confounding factors that may also cause VI reduction (e.g., cloud contamination,
diseases, and pests). For the second method, the difference in VI between the hazard
year and the hazard-free year is a combination of the crop response to the hazard damage
and interannual variations of climatic conditions and phenological stages. Therefore, it
is challenging to quantify the real effect of a hazard on the crop from the mixed-signal if
the interannual variations of climatic conditions and phenological stages are not properly
accounted for [5]. Currently, there is still a lack of a remote sensing-based framework that
can effectively isolate the independent impact of a hazard on crops.

The “Difference-in-Differences” (DID) method from social sciences addresses a similar
issue to assess the independent impact of a policy on the subject of study. DID is a robust
nonexperimental tool in econometrics and quantitative research that can evaluate the
causal effect of programs or policies [13–16]. The essence of the method is to control the
double difference (changes over time and over control group) during the assessment [16].
The independent effect of a specific policy or treatment is quantified by comparing the
difference in outcome after and before the intervention for the group affected by the
treatment to the difference of the unaffected group (or control group) [17] (more details of
DID can be found in Section 3). When we apply DID to crop condition monitoring, it can
provide an effective way to isolate the VI change caused by a hazard from the VI change
caused by other compounding factors, thus, allowing us to quantify crop response to a
specific hazard. To the best of our knowledge, DID has not yet been adopted in agriculture
remote sensing field.

This research aims to establish a general DID framework to monitor crop response to
hazards at near real-time using widely accessible remotely sensed VI data. To demonstrate
the effectiveness of the monitoring framework, we used winter wheat as the crop of interest
in this study because this crop is the main staple food crop in China and its production plays
an essential role in ensuring China’s food security [18,19]. As a case study, we applied the
proposed framework to assess winter wheat response to the dry-hot wind (also called heat
stress). The dry-hot wind is a type of agrometeorological hazard with high air temperature,
low air humidity, and certain wind speed. According to the Chinese meteorological
industry standard [20], if the maximum temperature is greater than 31 °C, the relative air
humidity is less than 30%, and the wind speed is greater than 3 m/s, winter wheat is at
risk of exposure to dry-hot wind events. This type of hazard usually occurs during the
reproductive and grain-filling periods of winter wheat and can cause severe impacts both
on crop yield and quality for winter wheat [21–24]. We chose dry-hot wind for this case
study because recent global warming has increased the frequency and intensity of dry-hot
wind events, thus causing urgent need of an effective monitoring framework [25–28]. An
effective monitoring framework of winter wheat response to dry-hot wind will not only
improve crop yield forecast but also provide near real-time information for farmers to
mitigate damage caused by dry-hot wind [7].

Despite the urgent need, quantifying the response of winter wheat to dry-hot wind
is quite challenging, especially over large areas. Previous studies primarily focused on
controlled field experiments and crop model simulations [29,30]. Both field experiments
and crop model studies are indispensable for understanding the physiological mechanisms
responsible for damages caused by dry-hot wind. However, they are not fully capable of
representing crop response to dry-hot wind in a natural environment over large areas. For
example, field experiments tend to be conducted over a limited set of sites which require
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intensive labor for data collection and analysis. It may provide the most accurate results
on crop damage of a specific event at local scale, but it is very challenging to apply it over
large areas due to its requirement of intensive labor. On the hand, process-based models
have been used to monitor crop responses to meteorological and soil conditions based on
given management practices over certain regions (e.g., Monitoring Agricultural Resources
(Europe) [31,32] and Yield Prophet (Australia) [33]. Nonetheless, it is very challenging to
use such models to represent crop responses to extreme events like dry-hot wind over large
areas [29]. Additionally, it is still controversial whether crop models can be well generalized
to large areas [34]. Remote sensing can offer relevant information over large areas in a rapid
and cost-effective manner. The full suite of information provided by field data, satellite-
based system, and process-based crop model can provide the most comprehensive and
accurate information of crop growing status and its response to extreme events. Figure 1
shows the growth cycle of winter wheat from the remote sensing perspective using the
time series of VI and possible hazards that may occur at different growth stages.

Figure 1. The growth cycle of winter wheat represented by the time series of remotely sensed normalized difference
vegetation index (NDVI, green curve) and the relevant hazards that may occur at different crop growth stages. The
numbers in parentheses represent the number of relevant published papers in the Web of Science Core Collection for the
corresponding hazards.

We conducted a literature search in the Web of Science Core Collection using “remote
sensing” (as the topic), “winter wheat”, and various agrometeorological hazards (in the
title) in all available years (i.e., 1980–2020). The number of returned articles for different
hazards is also listed in Figure 1. Overall, we only found 20 articles addressing the five
major hazards, with only one study focusing on the dry-hot wind. This study uses remotely
sensed data to investigate the responses of crop growth duration and leaf area index (LAI) of
winter wheat to heat stress during the reproductive stage [22]. However, the retrospective
study does not provide the capacity for rapid monitoring of high-temperature damage to
winter wheat by remote sensing. A potential reason for the scarcity of relevant research is
that dry-hot wind usually occurs at the post-heading stage when VI displays a downward
trend. Thus, the drop of VI value caused by dry-hot wind is usually superimposed on the
intrinsic downward part of the VI curve (Figure 1), making it very difficult to isolate the
impact from the dry-hot event. How to isolate the reduction of VI caused by dry-hot wind
from the mixed signal of the observed VI curve is the primary issue to effectively monitor
the winter wheat response to dry-hot wind using remotely sensed VI data. Fortunately,
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the DID method has the potential to disentangle the mixed signal for quantifying wheat
response to dry-hot wind based on its principle [16,17].

2. Theoretical Basis for Remote Sensing Monitoring of Dry-Hot Wind
2.1. Spectral Response to Dry-Hot Wind

Dry-hot wind can lead to shortened grill-filling period and pollen viability reduction
for winter wheat. Its main physiological impact on wheat is accelerated leaf senescence,
including inactivation of photosynthetic enzymes, production of chloroplast oxidative
damage, and reduced leaf water content [35]. These physiological responses can eventually
be observed in the spectral reflectance of winter wheat. Spectral measurement in the field
experiments revealed that the reflectance of winter wheat decreases significantly in the
near-infrared (NIR) band and increases slightly in the visible bands (i.e., blue, green, and
red) [36,37]. These spectral responses are more pronounced under the severe dry-hot wind
treatment than under the mild dry-hot wind treatment. Therefore, the observed VI loss can
reflect chlorophyll deterioration, reduced photochemical efficiency, decreased leaf water
content, shortened grill-filling period (e.g., early end of grain-filling), and eventual yield
loss caused by dry-hot wind to some extent.

To confirm whether the spectral response to dry-hot wind can also be observed in Mod-
erate Resolution Imaging Spectrometer (MODIS) data, we selected wheat pixels affected by
dry-hot wind events with different levels of severity to analyze their reflectance response
to dry-hot wind events using seven spectral bands in the MODIS bidirectional reflectance
distribution function (BRDF)-adjusted daily reflectance product (MCD43A4). The dry-hot
wind severity is derived from meteorological data using Chinese national meteorological
industry standard [20]. Different levels of dry-hot wind severity are calculated based on
Table 1.

Table 1. The Chinese national meteorological industry standard for determining different levels of dry-hot wind severity.
RSM20cm represents 20cm relative soil moisture (%), which is the percentage of soil water content to the field water holding
capacity. Tmax represents maximum air temperature (◦C), RAH14 represents relative air humidity (%) at 14:00, WS14

represents wind speed (m/s) at 14:00.

Regions RSM20 cm
Mild Moderate Severe

Tmax RAH14 WS14 Tmax RAH14 WS14 Tmax RAH14 WS14

Wheat Region in
North China

<60 ≥31 ≤30 ≥3 ≥32 ≤25 ≥3 ≥35 ≤25 ≥3
≥60 ≥33 ≤30 ≥3 ≥35 ≤25 ≥3 ≥36 ≤30 ≥3

As shown in Figure 2a,c,e, the reflectance of winter wheat in the NIR band (band 2
in MCD43A4 product) decreases, while reflectance in the visible bands (bands 1, 3, 4 in
MDC43A4 product) increases after experiencing the dry-hot wind. The magnitude of the
reflectance change is also more pronounced as the severity of the dry-hot wind increases,
which is consistent with the results of the controlled field experiments [36,37]. Additionally,
the reflectance of the short-wave infrared band (SWIR1,1628–1652 nm, band 6 in MCD43A4
product) increases notably, which suggests the reduced leaf water content caused by the
dry-hot wind [35]. These spectral changes, especially of the red, NIR, and SWIR1 bands,
are evident in the time series of MODIS data, as shown in Figure 2b,d,f, indicating the
potential of using MODIS data to monitor the response of winter wheat to dry-hot wind at
a large scale.
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Figure 2. The response of MODIS BRDF-adjusted spectral reflectance (MCD43A4) and VIs to the dry-hot wind. During this
period, winter wheat is in grain-filling period. (a,b) shows the response to a mild dry-hot wind event, (c,d) exhibits the
response to a moderate dry-hot wind event, and (e,f) represents the response to a severe dry-hot wind event. The gray areas
represent the duration of the dry-hot wind events.

2.2. VI Response to Dry-Hot Wind

VI can be employed to further enhance the above spectral responses of winter wheat
to the dry-hot wind. Historically, the normalized difference vegetation index (NDVI) and
the enhanced vegetation index (EVI) have been widely used for remote sensing monitoring
of vegetation growth status [38,39]. However, both NDVI and EVI do not use the short-
wave infrared (SWIR) band, which responds strongly to the dry-hot wind because of its
sensitivity to plant leaf water content. Conversely, the normalized difference phenology
index (NDPI) uses the SWIR1 band in its calculation, which was originally developed to
improve phenology monitoring for the deciduous ecosystem by minimizing the impact
of snow and soil background on VI [40,41]. NDPI has a very similar form with NDVI by
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replacing the red band reflectance in NDVI with a weighted combination of the red and
SWIR band reflectance (Equation (1)).

NDPI =
ρNIR − (0.74 · ρred + 0.26 · ρSWIR)

ρNIR + (0.74 · ρred + 0.26 · ρSWIR)
(1)

where ρred, ρNIR, and ρSWIR are atmospherically corrected surface reflectance of the red,
NIR, and SWIR bands, respectively.

Including the SWIR band makes NDPI more sensitive to the change of leaf water
content than NDVI and EVI. Consequently, NDPI is more suitable for monitoring the dry-
hot wind damage to winter wheat. Figure 2b,d,f shows that the NDPI decreases notably
when winter wheat is exposed to dry-hot wind events, especially for moderate-to-severe
dry-hot wind events (Figure 2d,f). NDPI shows a much stronger response to dry-hot wind
events than individual bands, NDVI, and EVI. Accordingly, we use NDPI as the indicator
to assess the dry-hot wind damage to winter wheat rather than NDVI and EVI.

3. Methodology
3.1. Difference-in-Differences (DID) Method

The main idea of DID is to compare the difference in outcomes (i.e., Y in Figure 3a)
after and before an intervention between the affected and unaffected groups. As illustrated
in Figure 3a, an external intervention (e.g., a policy) divides the samples into two groups,
of which one is affected by the policy intervention (i.e., treatment group) while the other is
not affected (i.e., control group).

Figure 3. The conceptual framework of the DID-based method to monitor dry-hot wind damage to winter wheat. (a)
illustrates the basic principle of DID model; (b) is a schematic diagram of using DID model to monitor dry-hot wind disaster
for winter wheat; (c) represents four NDPI matrices within a 7 × 7 moving window centered on a target wheat pixel (i.e.,
before/after dry-hot wind and the treatment/control group); (d) is tabular form of wheat pixels reassembled pixel by pixel
from the four NDPI matrices in (c). These pixels are then used for DID model fitting.
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If there is no significant difference in the trend of the observed outcomes (Y) between
the treatment group and the control group (i.e., parallel trend assumption) before the
external policy intervention, the change of the observed outcome (Y) after and before the
policy intervention in the control group (∆Yc, Equation (2)) can be considered as the case
where the treatment group is not affected by the policy. By comparing the change of Y
after and before policy intervention in treatment group (∆Yt, Equation (3)) with that in the
control group, the inherent trend in treatment group is controlled, and the independent
effect of the policy (changes of Y over time and over the control group) can be isolated as
DD in Equation (4)).

∆Yc = Yc2 − Yc1 (2)

∆Yt = Yt2 − Yt1 (3)

DD = ∆Yt − ∆Yc (4)

The generic DID model can be expressed as

Y = α0 + α1D1 + α2D2 + α3D1·D2 + ε (5)

where D1 and D2 are two dummy variables used to differentiate the treatment/control
group and before/after treatment, respectively. D1·D2 is the cross term of these two dummy
variables. α0, α1, α2, and α3 are coefficients while ε is the residual term. The values of D1
and D2 for the i-th observation are given by Equations (6) and (7).

D1(i) =
{

0, observation in the control group
1, observation in the treatment group

(6)

D2(i) =
{

0, observation is be f ore the intervention
1, observation is a f ter the intervention

(7)

Then, the coefficient of the cross term D1·D2 (i.e., α3) can be solved by fitting Equa-
tion (5) by least square method, which is the unbiased estimation of DD as written in
Equation (8):

α̂3 = (Yt2 − Yt1)− (Yc2 − Yc1) = ∆Yt − ∆Yc = DD (8)

3.2. Implementation of DID Method for Monitoring Dry-Hot Wind Damage

The DID method can be adapted to monitor crop response to agrometeorological
hazards using remotely sensed VIs. When the occurrence of a hazard is considered as an
intervention, the year when the hazard occurred can be considered as the treatment group
and the hazard-free years can be treated as the control group. In this study, we use dry-hot
wind as an example to illustrate the DID-based monitoring framework (Figure 3), which
also can be applied to other crop types and hazards. Figure 3b–d shows the conceptual
framework for implementing the DID method to monitor dry-hot wind damage to winter
wheat using remotely sensed NDPI. Supposing that dry-hot wind in a given year starts at
t1 and lasts until t2, its impact can be observed by comparing the observed NDPI curve
of a wheat pixel in dry-hot wind affected year (red curve in Figure 3b) with the reference
NDPI curve of the same pixel (black curve in Figure 3b). The reference NDPI curve
reflects the ideal growth condition of the same pixel under the same climatic condition
and phenological stages without dry-hot wind events. Accordingly, the dry-hot wind
affected NDPI curve (red curve) and the ideal NDPI curve (black curve) in Figure 3b can
be considered as belonging to treatment and control groups in Figure 3a, respectively.
Thus, the independent effect of dry-hot wind on the winter wheat can be quantified using
NDPI as:

DDNDPI = (NDPIt2 − NDPIt1) − (NDPIc2 − NDPIc1) = ∆NDPIt − ∆NDPIc (9)
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where NDPIt1, NDPIt2 are values from affected NDPI curve at t1 and t2, and NDPIc1,
NDPIc2 are values from the reference NDPI curve at t1 and t2 (Figure 3b). Following
Equations (5)–(8), DDNDPI can be unbiased estimated by α3 in fitted Equation (5).

To successfully implement the DID framework, there are three key issues that need to
be addressed: (1) how to generate the reference NDPI curve in the control group, (2) how
to determine NDPI values before and after dry-hot wind, and (3) how to obtain a sufficient
number of samples belonging to treatment and control groups, respectively, which are
needed in Equation (5) fitting.

3.2.1. Generating the Reference NDPI Curve Using Shape Model Fitting

To generate the reference NDPI curve for a pixel, we first calculate the multiyear
average NDPI curve (black curve in Figure 4a) using the observed NDPI of hazard-free
years (gray curves in Figure 4a). To avoid outliers, only NDPI values between upper and
lower quartiles are used for the multiyear average calculation. The multiyear average
NDPI curve is less sensitive to missing data caused by clouds and noises comparing to any
single-year NDPI curve (Figure 4a). We then apply the Savitzky–Golay (SG) filter [42,43] to
further reduce possible noise and random fluctuations that may still exist in the multiyear
average NDPI curve (orange curve in Figure 4a). The SG-filtered multiyear average NDPI
curve is still not the optimal reference curve for a given dry-hot wind year, because it does
not consider the impact of the interannual variation in climatic condition and phenological
stages. To account for the interannual variations, we apply the shape model fitting (SMF)
to the SG-filtered multiyear average NDPI curve [44–46]. SMF is effective in eliminating
both phenological shifts and magnitude changes of VI curves simultaneously caused by
interannual variations [5].

Figure 4. The shape model fitting method to generate the reference NDPI curve (DHW in legend represents dry-hot wind).
(a) illustrates how the shape model is generated using the multiyear NDPI curves. Interquartile range is represented by
light gray-shaded areas in (a); (b) shows the difference between the shape model and the target NDPI curve; (c) shows the
process of generating the reference NDPI curve using shape model fitting method; (d) illustrates how to determine the
NDPI values before and after the occurrence of dry-hot wind from the dry-hot wind affected NDPI curve and the reference
NDPI curve. Dark gray box in (d) represents the duration of dry-hot wind episode and light gray box represents 6 days
after the end of the dry-hot wind episode.
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SMF assumes the target VI curve can be represented with a shape model adjusted by
three optimized scaling parameters:

h(t) = sy × {g (st × (t + t0))} (10)

where function g(t) is the shape model and h(t) is the transformed VI curve as a function
of time. sy, st, and t0 are three scaling parameters controlling the difference between h(t)
and g(t). Here, st and t0 represent phenological adjustment while sy represents magnitude
adjustment. In this study, we use the SG-filtered multiyear average NDPI curve as the
shape model (i.e., g(t)). Therefore, we only need to optimize these three scaling parameters
to account for the difference between the SG-filtered multiyear average NDPI curve and
the transformed NDPI curve.

These three parameters are optimized by minimizing the weighted root mean square
error (wRMSE, Equation (11)) between the transformed NDPI curve (green curve in
Figure 4c) and the target NDPI curve, which is the SG-filtered NDPI curve of the dry-
hot wind year (black curve in Figure 4c).

wRMSE =

√
n

∑
i=1

wi( f (ti) − h(ti))
2 (11)

In Equation (11), function f (ti) is the target NDPI curve and h(ti) is the transformed
NDPI curve. n is the number of time steps used in curve matching, wi is the weight of the
i-th time step ti (expressed as the day-of-year, DOY) of the NDPI curve. Different weights
are given to different time steps following Equation (12) [47]:

Di =

{
1 , ti = tDHW − 1

1
tDHW−ti

, ti < tDHW − 1 Wi =
Di

Σn
i=1Di

(12)

where tDHW is the date when the dry-hot wind occurred. Overall, the weight is inversely
proportional to the temporal distance between ti and tDHW − 1. We only use the NDPI
curve before the dry-hot wind event for optimizing the scaling parameters to avoid the
impact of the dry-hot wind. The optimized scaling parameters will be then applied to the
entire SG-filtered multiyear average NDPI curve to obtain the final reference NDPI curve.

3.2.2. Determining the NDPI Values Before and After Dry-Hot Wind

The DID method requires NDPI values before and after dry-hot wind for both the
treatment group and the control group. To avoid removing signals of the dry-hot wind
damage on NDPI, we use the original NDPI curve of the dry-hot wind affected year (the
treatment group) without applying SG filtering. However, the noise caused by cloud
contamination and atmospheric effects still needs to be addressed. Thus, the highest NDPI
value (red point in Figure 4d) during the duration of the dry-hot wind episode (the dark
gray box in Figure 4d) is used as the observed outcome of the treatment group before the
treatment. Since there is minimum noise in the reference NDPI curve, the NDPI value of
the corresponding time step on the reference NDPI curve is used as the observed outcome
of the control group. As for the observed outcome after the dry-hot wind, the highest
NDPI value (blue point in Figure 4d) during the 3–6 days after the end of the dry-hot
wind episode (the light grey box in Figure 4d) of the event year NDPI curve is selected for
the treatment group. Meanwhile, the NDPI value of the corresponding time step on the
reference NDPI curve is selected as the observed outcome for the control group. We use
the time window of 3–6 days after the dry-hot wind event based on the assumption that
the NDPI values are unlikely to recover to their previous status within this time window.

3.2.3. Using the Moving Window to Get Regression Samples

After obtaining NDPI values of the treatment and the control groups, we need to get a
sufficient number of samples to fit the DID model (Equation (5)). Since the dry-hot wind
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typically affects a region instead of individual pixels, all pixels within a 7 × 7 moving
window (3.5 × 3.5 km in MCD43A4 product) centered on the target wheat pixel (red in
Figure 3c) are used for robust model fitting. The four NDPI matrices within the moving
window (i.e., before/after dry-hot wind and the treatment/control group) are reassembled
pixel by pixel into a tabular form as shown in Figure 3d. Then, the generic DID model can
be fitted by taking NDPI as the dependent variable while D1, D2, and the cross term D1·D2
are the independent variables. The coefficient of the cross term D1·D2 (i.e., α3 in Equation
(5)) is the unbiased estimator of DDNDPI in Equation (9), which is used to quantify the
severity of damage caused by dry-hot wind.

Generally, α3 should be negative after the hazard, indicating the adverse effect caused
by dry-hot wind on NDPI. A larger magnitude of α3 suggests that the wheat is more
seriously damaged by the dry-hot wind. Here, the Student’s t-test can be further used to
exclude the pixels with nonsignificant estimates of α3 that are likely caused by random
noises (such as poor atmospheric condition and cloud contamination) rather than dry-
hot wind.

4. Study Area and Data
4.1. Study Area

Henan, Shandong, and Hebei are the three major winter wheat-growing provinces
in China, accounting for 49.25% of the country’s wheat planting area (Third National
Agricultural Census, http://olap.epsnet.com.cn/). The frequent occurrence of dry-hot
wind in these provinces has become a limiting factor of stable crop yield thus affecting the
national food security. It is of great importance to provide rapid monitoring and assessment
of wheat damage caused by dry-hot wind in this area. As a case study, we chose the wheat
planting region in these three provinces covered by a single MODIS image tile (h27v05)
as the study area, which covers Henan, Shandong, and the south-central part of Hebei
(Figure 5). The case study area belongs to a warm temperate monsoon climate and has
relatively flat topography. The suitable climate and flat terrain make this area favorable for
winter wheat cultivation [18].

Figure 5. Study area and locations of meteorological stations.

http://olap.epsnet.com.cn/
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4.2. Data

The MODIS nadir BRDF-adjusted daily reflectance data (MCD43A4, spatial resolution
500m) from 2002 to 2018 were downloaded from the NASA EARTHDATA website (
https://earthdata.nasa.gov/). Considering the wheat growth cycle and the season when
dry-hot wind typically occurs, MODIS data between March and June was used to calculate
the NDPI time series in the case study. Meteorological data were collected from the
Chinese Meteorological Administration (CMA) for 319 sites in the study area from 2002
to 2018. The meteorological data were used to identify dry-hot wind events according to
the Meteorological Industry Standard of the People’s Republic of China: Disaster grade
of dry-hot wind for wheat (QX/T 82—2019) [20]. The meteorological records were also
used to select years with different severities of dry-hot wind events. For each site, the daily
intensity of a dry-hot wind event was assigned value 1 (labeled as mild), 2 (moderate),
or 3 (severe) based on the national standard [20]. These daily intensity levels were then
summed for each dry-hot wind hazard period (usually lasting for days) to represent the
meteorological intensity of the hazard at each site.

Based on the meteorological records of the study area, three dry-hot wind events
occurred in mid-May 2007 (11 May–22 May, mild event), early-May 2013 (9 May–15 May,
moderate event), and late May 2014 (25 May–31 May, severe event) were selected. Addi-
tionally, a 16-m crop type map provided by the Chinese Academy of Agricultural Sciences
(CAAS) [48] was used to identify wheat-growing pixels in the study area. The high-
resolution crop type map was aggregated to the same 500-m grid of the MODIS product.

5. Case Study Results of Dry-Hot Wind Monitoring

Figure 6a,c,e shows the negative coefficient α3 estimated from the DID-based method,
which indicates the observed NDPI loss of each winter wheat pixel during dry-hot wind
period in three respective years. The winter wheat pixels that show statistically significant
NDPI loss (i.e., significant negative α3, using t-test) are represented by red color, and they
are considered to be dry-hot wind affected wheat in Figure 6b,d,f. Figure 6b,d,f also shows
the comparison between the dry-hot wind affected wheat and the site-level intensity of
dry-hot wind hazard calculated from the meteorological records.

Generally, the NDPI loss is the most serious in 2014, followed by 2013 and 2007, which
is consistent with the meteorological intensity based on the site meteorological records.
Additionally, the spatial distribution of the significantly affected wheat area is consistent
with the distribution of sites with a higher meteorological intensity of the hazard (e.g.,
red circles in Figure 6b,d,f). Nonetheless, not all sites with a high meteorological intensity
show statistically significant NDPI response caused by the dry-hot wind (e.g., blue circles
in Figure 6b,d,f). This may be because the response of winter wheat to the dry-hot wind is
not only related to the intensity of the hazard but also mitigated by soil moisture, wheat
varieties, growth status, and farming interventions in response to the dry-hot wind episode.
It should be noted that not all estimated NDPI loss was caused by the dry-hot wind.
Other factors, such as poor atmospheric conditions, cloud contamination, and diseases
and insects, could also lead to estimated NDPI loss. To ensure the robustness of further
analysis, only wheat pixels with statistically significant results of α3 (t-test, p < 0.05) were
considered to be affected by dry-hot wind in this study.

Currently, there is no available field data of crop damage caused by dry-hot wind on
a large scale. This is because it is difficult for wheat specialists to quantify the damage
for a large area by separating the damage caused by the dry-hot wind damage and the
natural wheat maturation. The lack of such field data makes it challenging to evaluate the
DID-based damage estimation.

Alternatively, our results were compared with the meteorological intensity of the dry-
hot wind even though the actual damage to wheat may be modulated by other factors (e.g.,
soil moisture, wheat varieties, growth status, and farming interventions). Although this
may not be the ideal validation, it allows us to evaluate the effectiveness of our results to
some extent assuming the damage to winter wheat should be generally associated with the

https://earthdata.nasa.gov/
https://earthdata.nasa.gov/
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intensity of the hazard. In other words, the estimated α3 should be negatively correlated
with the meteorological intensity of the dry-hot wind hazard.

Figure 6. The NDPI loss derived from the DID-based method and the corresponding meteorological intensity of dry-hot
wind hazard for the year of 2007 (mild, (a,b)), 2013 (moderate, (c,d)), and 2014 (severe, (e,f)). The green shaded pixels in
(b,d,f) represent the wheat-growing area based on the resampled crop type map. The area marked by red color in the second
column shows the area with statistically significant NDPI loss (i.e., significant negative α3, using t-test) based on the DID
method. Each point in the second column represents a site with the size corresponding to the intensity of dry-hot wind
for that year calculated from the meteorological records. Red circles in (b,d,f) indicate that the spatial distribution of the
significantly affected wheat area is consistent with the distribution of sites with a higher meteorological intensity of the
hazard. However, blue circles indicate that their spatial distribution is inconsistent.

Thus, we aggregated all statistically significant estimations of α3 for each year within
the Thiessen polygon of each meteorological site by simple average to represents the dam-
age of winter wheat caused by dry-hot wind for each site. The aggregated estimation of
damage to winter wheat was then compared with the site-level meteorological intensity
of each dry-hot wind year. Figure 7 shows a significant negative correlation between
the estimated damage and the event intensity for the years of 2007 (Figure 7a) and 2014
(Figure 7e), but the relationship is not significant for the year of 2013 (Figure 7c). When
the data for these three years are pooled together, the relationship between the estimated
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damage and the event intensity appears to be stronger (Figure 7g). To further demon-
strate the relationship, the mean value of the estimated damage of each site-level hazard
intensity level was used (Figure 7b,d,f,h). The mean value of the estimated damage shows
a stronger negative relationship with the hazard intensity when compared to site-level
results, especially when the three years of data were used together. The coefficient of
determination (R2) even reached 0.9 when the three-year data were aggregated (Figure 7h).
These results confirmed the hypothesis that damage to winter wheat is associated with the
hazard intensity thus demonstrating the effectiveness of the DID-based method for large
scale monitoring to some extent.

Figure 7. The comparison between the damage to winter wheat estimated by the DID-based method and the meteorological
intensity of dry-hot wind hazards (a,b): 2007, (c,d): 2013, (e,f): 2014, (g,h): all three years; the colors in subplots (a,c,e), and
(g) represent data point density estimated by kde2d function in R. They are related to the number of days with the same
dry-hot wind intensity and similar α3 value).
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6. Discussion
6.1. Parallel Trend Assumption

The DID method is constructed under the key parallel trend assumption, which is that
the treatment and the control groups should have the same trend of the observed outcome
before the treatment. As there is no available statistical test for this assumption [49],
we followed other studies in econometrics using visual inspection and placebo trials to
examine the validity of the parallel trend assumption [50,51]. In the visual inspection
(Figure 8), the NDPI curves of the treatment group (red color) and the control group
(in black) for unaffected wheat pixels (Figure 8a,b,c) exhibit good consistency of NDPI
trend both in pretreatment periods and treatment periods (i.e., dry-hot wind impacted
period marked by gray box). For wheat pixels with significant damage (Figure 8d,e,f),
the reference NDPI curve and affected NDPI curve shows a consistent NDPI trend in the
pretreatment period. During the dry-hot wind impacted period, the affected NDPI curve
deviated notably from the reference NDPI curve that persists even after the dry-hot wind
impacted period ended. This deviation was mainly caused by the rapidly accelerated NDPI
decline due to severe dry-hot wind for the affected wheat pixels. Nonetheless, the visual
inspection demonstrated that the parallel trend assumption is valid for both unaffected
and affected winter wheat pixels prior to the dry-hot wind event (i.e., treatment).

Figure 8. Visual inspection of the parallel trend assumption. The NDPI curves of three dry-hot wind years (a,d): 2007; (b,e):
2013; (c,f): 2014) are in red and their corresponding reference curves are in black. Typical pixels unaffected by dry-hot wind
are shown as the first row (a,b,c) while typical pixels affected by dry-hot wind are shown as the second row (d,e,f). The
dry-hot wind impacted periods are marked by a gray box.

To further quantitatively examine the validity of the parallel trend assumption, the
placebo trials were designed for the three years used in the study (i.e., 2007, 2013, and
2014). The placebo trial is usually designed by applying the same assessment to samples
without treatment. If the parallel trend assumption is true, the results of the placebo trial
will be significantly different from the real assessment. In this study, the period of placebo
trials was set as a period without dry-hot wind based on meteorological data before the
date when the hazard occurred. The parallel trend assumption is considered valid if
fewer affected wheat pixels are detected by the DID method in the placebo trial than the
original DID results. Figure 9 shows that a very limited number of sparsely distributed
wheat pixels were identified as affected by dry-hot wind in the placebo trials, which is
significantly different from the DID-based assessment for the actual dry-hot wind event.
The limited number of affected wheat pixels detected in the placebo trials is likely related
to the rapid decrease of NDPI caused by random noises or other agricultural hazards (e.g.,
cloud contamination, drought, or pests, etc.).
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Figure 9. Results of the placebo trial of the three years used in this study. The first row is the placebo trial results (a,b,c) and
the second row is the actual dry-hot wind monitoring results (d,e,f).

Both the visual inspection and the placebo trials confirmed that the parallel trend
assumption is valid for this case study using the DID-based framework to evaluate winter
wheat damage caused by the dry-hot wind. We recommend that users who are interested
in applying this framework to different applications should examine the validity of the
parallel trend assumption using similar methods for their applications.

6.2. Sensitivity to Moving Window Size

In the proposed DID framework, we used a 7 × 7 moving window surrounding the
target wheat pixel to determine which samples (i.e., wheat pixels) were used to estimate
the coefficient α3 based on the assumption that the dry-hot wind plays a similar role in
a local region with similar local environmental conditions. We tested the sensitivity of
the framework to the moving window size to determine the proper size by varying the
window size between 3 × 3 pixels (i.e., 2.25 km2) to 19 × 19 pixels (i.e., 90.25 km2) with an
increment of two MODIS pixels.

Here we only used the dry-hot wind event in 2014 as an example. Figure 10 shows the
monitoring results using different window sizes, which are almost identical in the spatial
distribution. This similar spatial distribution suggests that the DID-based framework is not
sensitive to the moving window size. When the moving window size is limited to 3 × 3
and 5 × 5 pixels, fewer damaged wheat pixels were identified than the results when a
larger window size was used. However, this difference is not noticeable when the window
size is larger than 7 × 7 pixels. To ensure sufficient samples for robust model fitting, we
thus chose 7 × 7 pixels as the moving window for this study. It should be noted that future
research should examine a more efficient strategy to determine the optimum window
size for the DID-based framework instead of this trial-and-error method which can be
computationally intensive.
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6.3. Applicability of DID Method to Different Vegetation Indices

As mentioned in Section 2.2, NDPI is more suited for monitoring dry-hot wind
damage to winter wheat thanks to the introduction of SWIR band which is sensitive to
plant leaf water content. However, NDPI cannot be calculated using some high-resolution
remotely sensed data without the SWIR band for fine-scale monitoring. Thus, we tested
whether the DID method is equally applicable by using other vegetation indices that
do not require the SWIR band (i.e., NDVI and EVI) to monitor winter wheat response
to the dry-hot wind. Figure 11 shows the scatterplots of estimated a3 using NDVI and
EVI [38,39] compared against the estimated a3 using NDPI and the spatial distribution
of the statistically significant negative a3 estimated using all three VI for the year of 2014.
There is a better agreement between the NDVI-based results and the NDPI-based results,
with the R2 approaching to 0.6 (Figure 11a) compared with that of EVI-based results
(R2 = 0.43) (Figure 11b). Results using three different VIs show a similar spatial pattern of
the detected wheat damage, although the EVI-based result appears to be more dispersed.
Therefore, in cases when NDPI is not available, NDVI can be used as an alternative VI for
assessing dry-hot wind damage to winter wheat.
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Figure 11. The scatterplots of estimated a3 using NDVI and EVI against the estimated a3 using NDPI for the year of 2014
(a,b) and the spatial distribution of statistically significant negative a3 estimation using NDVI (c), EVI (d), and NDPI (e).

6.4. Advantages and Limitations of the DID Framework

Dry-hot wind hazards can impose detrimental impacts on wheat growth and yield. In
this paper, we proposed a general DID framework and applied it to quantify the dry-hot
wind damage to winter wheat. The main advantage of this method is that it can effectively
isolate the independent impact of the dry-hot wind from the mixed signals observed in
the inherent downward trend of the NDPI curve due to the wheat maturation process. To
the best of our knowledge, the separation of independent effects is not possible with the
existing methods using remotely sensed data on a large scale.

There are three key steps to implement the DID framework for monitoring the winter
wheat response to dry-hot winds. The first step is to construct a reference NDPI curve
for the control group using the multiyear average NDPI curve (derived from hazard-
free years) and then adjusted using the shape model fitting (SMF) method. This process
allowed us to take full advantage of the historical data to robustly account for the impacts
related to interannual variations of climatic conditions and phenological stages on the
reference NDPI curve. Additionally, it ensures the validity of the parallel trend assumption
between the reference NDPI curve (the control group) and the observed NDPI curve of
the dry-hot wind year (the treatment group). In the second step, the time steps with the
largest NDPI value were chosen during the period of dry-hot wind hazard and during
the 3–6 days after the end of the dry-hot wind, respectively, to avoid potential impact
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from random noise in the data. The third step uses a 7 × 7 pixel moving window to fully
utilize the spatial information from adjacent pixels to estimate the impact. It also allows
for a statistical significance test to ensure robust estimation of the impact that is caused by
the dry-hot wind. In our case study, only pixels with statistically significant estimations
were considered to be caused by the dry-hot wind. The statistical test using the moving
window allowed us to filter out pixels with similar NDPI reduction that may be caused
by data noise or other factors. Additionally, the DID framework has been shown effective
using both NDPI and NDVI for monitoring the impact of dry-hot wind to winter wheat,
suggesting the flexibility of such a framework. The general DID framework can also be
applied to other crop types and hazard events with careful adjustment.

However, the newly proposed method also has its limitations. As multiple agricultural
hazards (e.g., drought, diseases, and pests, etc.) may cause NDPI to decrease like dry-hot
wind, the prior knowledge of the dry-hot wind hazard occurrence (e.g., start and end
dates) extracted from the meteorological data are required as auxiliary data before applying
the DID framework. Moreover, if a dry-hot wind event coincides or overlaps with other
agricultural hazards, the NDPI decrease obtained from the DID based method (i.e., a3)
reflects the compounding impacts rather than the independent impact of the dry-hot wind
event. It is difficult to isolate the individual contribution of the dry-hot wind from other
hazards unless a remote sensing-based indicator that responds only to the dry-hot wind is
established in the future. Last but not least, we used dry-hot wind intensity extracted from
the meteorological data to evaluate our results because there is currently no available field
data on a large scale to evaluate the impacts caused by the dry-hot wind. Although we
found good agreement between dry-hot wind intensity and DID-based damage estimation,
it should be noted that this evaluation cannot replace the direct validation against the field
survey data when such data is available. To address this issue, appropriate field data will
need to be collected before and after a dry-hot wind event in future work. With the rapid
development of mobile devices, using mobile phone-based software and citizen science or
volunteer geoinformation system could be a potential solution to fill the field data gap.

7. Conclusions

In this study, we presented a general DID framework for monitoring crop response
to agrometeorological hazards with satellite data and applied it to quantify the dry-hot
wind damage to winter wheat in northern China. The main advantage of this method
is that it can control the intrinsic changing trend of the observed outcome (i.e., NDPI),
thus allowing for effective isolation of the observed outcome change (i.e., NDPI reduction)
caused independently by the hazard event (i.e., dry-hot wind hazard). In the case study of
dry-hot wind damage monitoring, there are three key steps in implementing the proposed
DID framework including (1) generating the reference NDPI curve, (2) determining NDPI
values before and after the dry-hot wind event, and (3) using a moving window to use
spatial information to robustly estimate the damage. To generate the reference NDPI curve
with the similar environmental conditions of the hazard year, the SMF method was used to
account for the impact of the interannual variations of climatic conditions and phenological
stages on the NDPI curve. It also ensures the validity of the parallel trend assumption
between the reference NDPI curve (the control group) and the hazard year NDPI curve (the
treatment group). Through this series of processing, both the historical data and the spatial
information within a local region can be fully utilized. Moreover, the proposed DID-based
framework is very flexible and can be easily extended to other natural hazards and crop
types with proper adjustment. We indirectly evaluated the results in the case study of
winter wheat damage caused by the dry-hot wind by comparing with the intensity level
of the dry-hot wind events because of the lack of field data to directly validate the results.
The notable relationship (R2 = 0.903, p < 0.001) between the intensity of the dry-hot wind
and the estimated damage of the dry-hot wind demonstrated the effectiveness of the newly
proposed DID framework. However, future work is still needed to use actual field data on
a large scale to evaluate the DID framework.
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